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Abstract ,
="' A new approach is introduced to estimating object surfaces in three-dimensional space from a
sequence of images. A surface of interest here is modeled as a 3-D function known up to the values g(,,,,.__. N
a few parameters. The approach will work with any parameterization. However, in work to date ‘we
have modeled objects as paiches of spheres, cylinders, and planes,---primitive objects. These primitive
surfaces are special cases of 3-D quadric surfaces. Primitive surface estimation is treated as the general
problem Wmum Tikelihood parameter estimation based on two or more functionally related data
sets. In euf-cuse, these data sets constitute a sequence of images taken at different locations and orien-
tations. A simple geometric explanation is given for the estimation algorithm. Though various tech- S

niques can be used to implement this nonlinear estimation, we discuss the use of gradieit descent.
Experiments are run and discussed for the case of aJ_;pﬁ of unknown location. These experiments
graphically illustrate the various advantages of using/as many images as possible in the estimation and
of distributing camera positions from frst to last over as large a baseline as possible. In order to
extract all the usable information from the sequence of images, -all the-images-should be available
simultaneously for the parameter estimation. We introduce the use of asymptotic Bayesian approxima-
. tions in order to summarize the useful information in a sequence of images, thereby drastically reducing
*.  both the storage and amount of processing required, 'The attractiveness of oyf Bayesian approach is that
““now all the usual ‘tgols of stitistical signal analysis can be br 6Igm to , the information extraction
appears tq’ be _robust and computitionally reasonable, the copcepts are geometric and simple, and essen-
tially optimal accuracy should result. / '

I. Introduction

Essentially all 3-D object surface estimation from iultiple views to date is based on either active stereo using a
laser and one or two cameras for triangulation, or on passive stereo involving matching points in two images and using
triangulation, or on optical flow (1], [10], [11]. We suggest a new approach in which surfaces of complex objects are
approximated by a few patches of 3-D parameterized surfaces, and these parameters are estimated from two or inore
images taken by calibrated cameras from different. focations and directions. These parameterized patches are referred to
as primitive objects. We formulate the parameter estimation problem as standard maximum likelihood estimation, given
two or more functionally related data sets. Estimation accuracy is achieved by processing data in blocks (which may be
large), in addition to processing man - :.aages and with camera posilions distributed over as large a baseline as possible.
The actual processing is simple standard statistical signal analysis. This approach, first presented in (4], is completely
new as far as we know. In summary, the contribution of this paper is the treatment of 3-D surface inference as a stan-
dard maximum likelihood parameier estimation problem requiring low data storage capacity and where parameter esti-
mates are updated recursively as each new image in a sequence of images is received and processed.

~ Central to 3-D surface estimation from two (or more) images taken from cameras in different locations and orienta-
tions is the pairing of points from two images that are images of the same point on a 3-D surface. This matching of
points in two images is usually done in either of two ways. (i) If the two cameras are physically close and their optical
axes are almost parallel, then their images will differ from one another only by translation---one will be a shifted version
of the other. Then image 1 can be partitioned into patches, and each patch cross-correlated with image 2 to find its loca-
tion in image 2. Once this correspondence is known, the location of the surface region in 3-D space seen in the pair of
corresponding image patches can be determined by triangulation. Since the surface region seen is usually curved, one
would like the patches to be small in order to locate the surface region seen accurately. However, if the images are
noisy, large surface patches must be used to accuratesy estimate a pair of corresponding patches in the two images.
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Significant triangulation errors occur when the camera optical axes are close together and almost parallel because of
matching emrors due 10 image noise, and because 3-D object surfaces are curved. Additional triangulation emror cecurs
because there is some error in camera calibration. (ii) An alternative approach that permits a large angle between the
camera optical axes {0 improve triangulation accuracy is to locate corresponding small local features in the two images.
An example of such a feature is a vertex of a polyhedron. For a curved surface, contours on the surface are features
often used to be matched in pairs of images. The difficuity here is that a large amount of pattern recognition may be
necessary to recognize a pair of corresponding features in the two images. Past efforts at cross-correlation of large image
paiches, as in (i), has been unsuccessful here because a patch in one image will be a distorted version of a comesponding
patch in the other image.

The work closest in spirit to ours is the recent work of Faugeras, Ayache and Faverjon (8], who develop the idea
of estimating points and lines on a 3-D object surface, or planar surfaces, from a sequence of images. More specifically,
they assume that the probability distribution for the estimates of points on a surface based on a pair of images is known.
They then assume that a sequence of such estimates and associated distributions are known for a sequence of images.
Their contribution, then, is to use the extended Kalman filter for combining this sequence of estimates to obtain improved
estimates of the surface points. They derive the equations for estimating lines, and suggest that it can be extended to
planes. Among the emrors 4hey take into acccunt, are those in camera calibration. Their concept is important, though
they do not tackle here the problem of opiimally estimating the surface points or lines directly from the data in the
images. :

Our paper is an expansion of one where our 3-D surface estimation algorithm was first proposed {4]. In subsequent
papers, we showed that our basic estimation algorithm is maximum likelihood estimation, and derived Cramer-Rao
irreducible lower bounds on the parameter estimation error covariance matrices (6], and we also discussed the use of
Markov Random Field (stochastic process) models for 3-D surfaces {S] as a generalization of the use of parameterized
surface models. These and the present paper together constitute a new Bayesian theory for 3-D surface estimation based
on a sequence of noisy images.

Sections 1L.A - 11.C introduce the transformations necessary for understanding the relation of images in two or more
views, Sections IIL.A - IIi.B describe the performance functional and the gradient descent algorithm used in estimating
the a priori unknown 3-D object parameters based on the use of two images. Section 1II.C provides a very simple
geometric interpretation of the algorithm. Sections IV.A - IV.D extend the approach for use of a sequence of images that
might be taken by a moving camera. In order to arrive at a computationally feasible algorithm, we introduce the use of
maximum likelihood estimation here. This development also points out that the algorithm described in section 11 is
maximum likelihood estimation. The importance of this observations is that maximum likelihood estimators are known
to converge to the true parameter values, and are known to have minimum estimation error covariance as the number of
observations become large. In section V we introduce a somewhat different estimator for a moving camera, and point

out that it hes certain desirable computational properties but is less accurate. This algorithm is somewhat similar to the
use of optical flow.

II.A Notation and Description of Camera Motion

Let P-be a point in 3-Dspace and r = (x y 2)'! be its coordinates in the Sfixed orthogonal world reference framse.
Since we assume that objects do not move, this reference frame is fixed with respect to the objects viewed by the cam-
era, and we will call it the object reference frame (ORF). Let r(n) = (x, ¥, z,,)T be the coordinates -of the point. P in
CRFn, the reference frame attached to camera n. This reference frame is such that: (1) the camera optical axis is parallel
1o the z, axis, and it looks at the negative z, axis; (2) the x, and y, axes are parallel to the sides of the image; (3) the
origin of the reference frame coincides with the center of the image plane. The image is corrected so that the view is
rot inverted top to bottom and left to right, i.e., a central projection is used.

Let B(n) denote the 3x3 orthogonal rotation matrix that specifies the three unit coordinate vectors for CRFn in
terms of the three unit coordinate vectors for the ORF. Let v (n) specify the origin of CRFn in the ORF. Then

r(n) = BT(n) [r - rc(n)]. and r = B(n)r(n) + r(n). , M

The rotation matrix B(n) and the translation vector r.(n) are known for calibrated cameras. In this paper, we will use b,
to represent a vector having as its components the parameters that specify both B(n) and r(n).

1 A symbol in boldface is a column vector, 2 superscript capital T attached 1o a vector deaotes vector transpose.




ILB Surface Parameterization

Our approach is applicable 10 any parameterized surface. A few researchers have used differential geometric pro-
perties, such as Gaussian curvature and mean curvature, 0 describe surfaces, see (2]. These are useful for surface
parameterization because they are coordinate free. In general, the surfaces we want to estimate can be described by an
implicit fusction with respect to the ORF:

g(rin) =g(x,y,z;8) = 0, | ()]

where a is the parameters describing the susface with respect to the ORF. For example, the equation for the general qua-
dratic surface is ,

253 + 2213xy + 2213%2 + By* + 2anyz + a2’ + 2214% + 200y + 2232 + 2 = 0. 3)
In this case we denote & = (I"' A2 oees ‘“)T.

1.C Images of an Object Surface Point in Two Image Frames

As shown in Fig. 1.2, P denotes a point on a parameterized 3-D surface of interest. This surface is described by a
function in the ORF (see section 11.B). The function is uniquely determined by specifying the values of a parameter vec-
tor a. Point P on the object surface is seen as points having coordinates s and u in images 1 and 2, respectively. We
assume a Lambertian reflectance model. Then the images of point P at s and u will have the same intensity. The tech-
niques proposed will not apply to specular reflectors, without modification, because the location of points on the object
surface at which specular reflection occurs depends on the camera location. Since most surfaces of interest are largely

" Lambertian, the assumption is a useful one. Hence,

13(w) = I1(8) @

where 1,(u) and Iy(s) are the picture functions (image intensity functions) in Frames 1 and 2, respectively. For those
cases where the Lambertian assumption does not apply, a possible modified approach is to use an edge map. Here, pix-
els are given values of 128 or O depending on whether they are detected as being edge points or non edge points, respec-
tively. These mazps are then smoothed to obtain more continuous arrays, and these are used as though they are regular
picture functions in our estimation algorithms. The usefulness of the edge map is that it is a representation of rapid
changes in the object surface patterns, and largely unaffected by the presence of some specular component in the object
surface. Experiments using edge maps with our algorithm are described in [6].

For simplicity, we use the orthographic projection model [7] for image formation, i.e., all rays from points on the
object surface to the camera are roughly parallel, (With slight modification, all of our results can be used with the per-
spective projection model.) Let #(1) = (x; y; z,)T be the coordinates of the 3-D surface point P with respect to CRF1,
and r(2) = (x; y2 22)7 be the coordinates of the point P with respect to CRF2. Then, under the assumption of ortho-
graphic projection,

s=(x Y, u=(x2 y"

If we pick a point 8 in image plane 1, it will correspond to some point P on the 3-D surface. If this point P is also seen
in image 2, its image in image plare 2 will occur at some coordinate u. Therefore, given some point s in image 1, if we
want to compute the corresponding image point u in image 2 based on the current estimation of a, we can:
(i) first, find the 3-D location of the corresponding surface point P;
(ii) then, find the image point u corresponding to P.

In step (i), represent the surface point P with respect to CRF1 by r(1) = (x; 1 z,)T. Using equations (1) and (2),
the equation of the surface is

g(r; a) = g( B(r()+r (1) : 2)=g( B()(x; i )T +r(1); 2)=0. 3)

Since the point P resides on the surface, r(1) must satisfy the above equation. Therefore, given s = (x; y))f, we can
solve equation (5) for z; . An example for the spherical surface is given in the next section.

In step (ii), we want to compute u. Now that we have obtained r(1) from step (i), using equation (1) we can com-
pute u = (x, y2)' by
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") =t 72 2 = B [r - D | = F@BO ) + B [ri0-r2)]. ®
Call C = BT(2)B(1) and d = BT(2) (r,(1) - r.(2)). Then, partition the C matrix and d vector as:

[Cu €2 e|
C= €y 2]’ d= dy |’

where Cy; is 22, ¢;3 and ¢} are 2x1, c,; is a number, e is 2x1, and dy is 2 number. From the preceding:

, u=Cps +ci32,(s,0,,8) +e. (62)
Combining steps (i) and (ii) above, we denole the functional relationship (6a) between s and u by
u=h(s b, 2(s,a) ), )

 where the vector b includes by and by, and specifies Cy, €3, and e.

1IL4 Estimation of the Parameterized Surface Using Two Images
If we know the camera position, b, and the true surface parameters, sy, then :
' Ii(s) = I;(h(s,b,2(s,ar))) ®)
for ench 3. Choose a region in image 1. Denote this pixel set in this region by D. Consider the error measure

ep(@) =3, [1,(3) = Iy( h(s.b.z(s.a)))]z-

()]
. seD
Then ep(a) is a minimum at & = ar. Our problem is to estimate ap by minimizing (9) with respect to a.
To estimate ar that minimizes (9), we choose to use the gradient method as follows:
' dep(a,)
Reos = 8y = —2 4y, , (10)
dep(a,) , .o
where A, depends on ep(a,) and e and has magnitude that goes to 0 as n goes to infinity,

de
There are several ways to compute the gradient —a—f-. We present one of the methods used in our experiments.
Taking the derivative of (9) with respect to a, we have

aCD - 3‘2(“)
S -2 '.“Zl',’ [h(s) - lz(u)] Frant ‘ (a1

where u is a function of a as shown in (7). Use of the chain rule giv%t
dlyu) _ dl(u) Ju Jx(s, 1)

- ou 2 o (2
|
where u = h(s, b, z(s,a) ) as in equation (7). The first term -—;—(})- can be computed approximately using the sobel

operator, The second term %z“- is just a constant provided that we assume the orthographic projection model. This can
be shown as follows. From equation (1)

r(2) = BT2) [r - rc(Z)]. )
and upon using the notation
1) =(x; y: )%, u=(x; y2)% r=(xy 2,

ol (u)
;. is 2 K component row vector, where K is the aumber of ihe components in columa vector &.

$ The notation used hers is that
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we have %:_ = (BT(2)y3 BY(2))", where BT(2), means the ij® element of matrix BY(2).

In general, it may be inconvenient to express z as an explicit function of a. Hence, we compute the third term by
dz(s, @) _ _0Jg(x.yz.a) [ Ip(x.y.2.8) (13)
on da oz

LB An Example: The Sphere
To illustrate the approach, consider a spherical surface descnbed by the equation

(x =% +(y - yo)* + (- 20" =R%. 14
For this surface, z can be solved for expliciuy. via
2=zt (RP = (x = %)% = (¥ — yo))'2. (15)

The positive square root is used since the outside surface of the spheré is seen by the camera looking in the negative z
direction. Hence,

(e w2 2 2,
. ax, ay. az, dR

=( (R=XMZ =23, (y-YNz—72) 1. RI(z-2,) )

(16)

and 2 — 2, = (R? = (x = xo)% = (¥ - yo)* ). The vector %:— can be computed directly from this,

The analogous equations for planes, cylinder and general quadrics are presented in {6].

HLC Algorithm Operation Interpretation

Fig. 1b is useful for illustrating, in two dimensions, the operation of our algomhm for uumating a,. Sphem in 3-
D are shown as circles. Consider the processing of the image patch between points 8" and s” in Frame 1. This patch is
the image of the patch between points p” and p” on the true sphere labeled a,. The same patch on the sphere surface
gives rise to the image patch between points u” and u” in Frame 2. Now suppose the system’s estimation of a, is &. The
associated sphere is shown. The performance functional for the estimate of a is given by (9) and is computed as follows. -
The system thinks that the locations on the sphere surface that give rise to the images at points 8’ and s8” in Frame 1 are
the intersections of the dashed linu, from 8’ and s”, with the sphere labeled &. These sphere surface points would be
seen as the images at point &’ and @” in Frame 2. Hence, the system takes the i image patch between points &’ and 4"
Frame 2 and assumes that the image at each point u in this interval is the same image as the image at a point 8 in the
interval between s’ and s” in Frame 1. The pomts u and s are related geometrically as in the figure, or algebraically by
(4). Performance functional (9) requires computing this error 1,(s) ~ Iy( h(s, b, z(s,a)) ).

We make the following interesting observations. From the geometry of image formation in Fig. 1b, the varying
scale change that maps the image patch over interval [#', 8”] in Frame 1 into the image patch over interval (u’, u”] is
seen. Note that both a scale change and a translation are involved in this 2-D illustration.

If the incorrect a is used in computing the performance functional (9), the patch of image used in Frame 2 is that
over the interval [, G”). Note that this interval is both a shit and a varying scaling of the interval {u’, u”]. If instead
of a sphere, we were dealing with 2 planar surface, the scale change would be constant throughout the image.

1V Estimation of Parametrized Surfaéc Based on a Sequence of Images

Now suppose a sequence of images is available for estimating ay, the true parameters of the surface. How can
best use be made of this data sei? In this section we develop a computationally reasonable approximately maximum
likelihood estimator (mle) for ay.
IV.A The Model

The model that we use for the n® image I (u), reD,, is that of some true picture function ji,(u) plus additive
white noise having variance o2, Hence, I (u), ueD,, is a set of random variables having joint probability density
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function (pdf) ‘ ‘
(anct) Y erp T {—(mo’) [k - u.(u)]’} o

where d, is the number of pixels in D,. We introduce the more compact notation: u,(s,a) = h(s,b,.a), and
s () m k~(u,b,8), where b, is the transformation parameters specifying the n® camera position. Let I, denote the
vector of picture function values, i.e., it has components I,(u), ueD,. Let p, denote the vector having components
j1(u), ueD,. Then (17) is a function of the parameter vector T o a")'. Because of the Lambertian assumption for
image formation,

Pq(u) = py(Sy(u,a)). (18)

Hence, the i, for all r can be specified in terms of ;. Then a = T o* a?)' is a parameter vector that specifies the
_pdf°'s (17), for all I,. Since the additive image noise is independent from image to image, the log of the joint pdf of
I,....Inis

LN(a)=lnp(l|.lz,...,lNla) )
< : 2 (19)
=—|3dy2 | lIn2rc? | - (120 L] X |lw) - mi(Swa) | )
el o=l |ueD, .
Our goal is to find 4y that maximizes (19). Since this estimatg is a maximum likelihood estimate (mle), we know that it
has certain desirable properties such as converging to ar as Y.d, — oo, and having minimum covariance matrix for the
osl '

N
error in the estimation of ar as Y,d, becomes large. The difficulty here is that p, is a priori unknown. Hence, in order

[
to compute 8y we must simultaneously compute i, the estimate of p, based on Isunl,...,In. Though this looks like a
formidable computational challenge, it is in fact easily manageable. In [6] we showed that (9), the performance func-
tional we minimize for estimating ag in the two picture case, is equivalent to (19) for N=2,

IV.B The Asymptotic Representation

As in section IIL.A, gradient methods can be used for minimizing -Ly(a). A problem here is that N images must
be stored and processed simultaneously. This incurs both a great amount of storage and a large amount of processing for
each N. An effective approximation for avoiding this storage problem can be had as follows. Let Iy denote
I, ..., In. In (3] itis shown that

p(Inl ) = p(In| On) exv{—(IIZXa - 6n) (I, OnX - aN)} (20)
where the function W(Iy, ) is a KxK matsix having ijth element
- * -~
(¥(In 0}y = —mmp(lula) . 1)

and K is the number of components in a. Hence, {20) has a Gaussian shape in @ with mean oy and inverse covariance °
matrix ‘¥(In, &N)-

Now suppose we wish to compute Gy,. We can write p(Taar 1 @) = p(Iyl @)p(Ina @), so that upon using (20),
there results

N —
Lyns(a) = [Zln pLsl au)] - %(a - o) (I, (@ - &) + InpIne l ) 22)
ol

The appeal of (22) is that all the useful information in Ty is summarized in the quadric form, i.e., the second term on the
right hand side of (22). Notice that only the two rightmost terms in (22) are functions of c@. Now O, can be found
approximately as the a that maximizes (22). Gradient descent can be used on (22). The gradient here is simply
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-3 -
2l = T b - 030 - 5 nplal) -

There is considerable computation here, since there are M? components for j, in an MxM pixel patch, and a would
therefore have M? + K + 1 components. A simplification is possible upon realizing that since the dependence of (22) on
M, is as a sum of two quadrics in i, a simple explicit value can be found for fguy) in terms of Gy, Inyi, W(In, &n), a?,
and 8. The resulting function to minimize is then a function of only 6* and a, hence, only K+1 parameters. Gradient -
descent can be used for this purpose. This solution is explored in [9]. Though this should provide the most accurate
estimate for a, for 2 number of reasons we have minimized a simpler function.

1V.C Approximate Likelihood Maximization ‘ ,

In this section, we treat I,(s), seD, as if it were jt,(s). Then p, is no longer treated as unknown -- only o® and a
are unknown. If our goal is to estimate a only, then we do not have to estimate o* since o gives information only about
the accuracy of the estimate for a (see [6]) but does not affect the value of the estimate for a (see [9]). Hence, @ =a.
For practical reasons, instead of letting D, be an arbitrary subset in image plane n, we proceed analogously to the two
image problems in Sec. IIL.A.. Hence, (17) becomes

1 2 \
OADE (2n02)-“nexp{ Y -= [1.(u.(s,a» - n(s)] } | )

seD,
Then,

Lui@ = Inp(Tyl 4, ) = 3-(a = 3" ¥(Ty B, 0%a = 1) 25
+ Inp(Ineg |2,0%) .

Now, our goal is to compute fix,;, the value of a that minimizes the negative of (25). We suggest a gradient descent
algorithm similar to that used in Sec. IILLA. Let 3y,;x denote the estimate for ay after the k™ iteration in the N+I* stage

(i.e., the N+1* stage is that following the input of the N+1% image and prior to the input of the N+2 image). Then we
compute Ay, as the limit of 3y, in (26).

] =} SCALE: M { 26
NeLxst = Bnprx + EP N (26)
From (24) and (25),
0L, i(a - Ol (Un,
- a‘( ) - Ty )@ - + 02 Y [lml(umx(S.a)) - 1.(s)] e ’“;" 1(52) @
uDl a
Once Ay, is computed, '¥(Iy, Ay, 6°) can be updated to ¥{Ine1, Aner, 62) by
- - 2 |
(Tt et ) = ¥(T By 0) — 5=l Pl .6 28)

amfy.,

with —

? . _—
X h
Sada In p(In.; |2,6%) a matrix having ijth element

LD {[lNﬂ(“Nu(S’ANH))‘I;(s)]

seD,

dada da da

For brevity, denote ‘?(IN, iy, 0%) by Wn. Then the incremental stereo algorithm is summarized as follows:

g RICIORICE ) [mmx(uml(&ﬂmn)) Il (une1(SAne)) ]}
+ )
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Read image 1.
Set'¥; =0,
ForN2 1.
Read image N+1.
Compute Ay by using Eq. 26 iteratively until it converges.
~ Compute ¥y, by Eq. 28,

S Wnd BN

IV.D Experiments With the Algorithm in Section 1v.C

Figure 2 shows a sequence of nine computer generated images of a sphere. The images were generated by taking
a few images of faces with a solid state T.V. camera, and using the computer to project these images onto a sphere.
Using the pattern on the sphere generated in this way, the computer was then used to generate the images that should be
seen by a camera at nine locations and with a specified CRF at each location. For this experiment the camera moved
along a circular arc of radius 2000 units lying in a horizontal plane. The camera optical axis pointed to the center of this
arc, and there was no rotation of the image plane about the optical axis. The angles between the camera optical axes in
successive images were 5°. The patch of subimage used in each of the nine images is the region about the left eye of
the rightmost face in the image. The patch of subimage is outlined as roughly a small square n white. The parameters
specifying the sphere are (xq, Yo zo)7, the sphere center, and R, the sphere radius. In the experiments run, the sphere
radius was assumed to be known and only the center was estimated. Table 1 shows the values of Ay found. The initial
guess used for the sphere center was in error by a litle more than the sphere radius of 128 units. The final estimate is in
error by roughly two units. The optical axis of the camera moved through an angle of 40° from its first to its last posi-
tion. These images were roiseless. However, some error is introduced because images are spatially quantized into pix-
els. Table 2 shows the estimates 3y for a more noisy image sequence. Each image here is the image in the correspond-
ing position in Fig. 2 plus white Gaussian noise. The added noise has standard deviation of 5 units (i.e., variance of 25
units). The initial estimate &; used here is also in error by about the sphere radius. The final error, based on nine
images, is a little bit more than that in Table 1, but it is small. The accuracy of the algorithm appears to be remarkably
good considering the small patches of data used in the estimation. In practice, image 1 would be partitioned into many
squares, and a sequence of estimates would be obtained for each. The information obtained from each patch would be
optimally combined using the methods presented in (3], thereby greatly improving the accuracy of the estimate of' ar.
With the initial error used here, the algorithm in (26) went through about 8-10 iterations to compute 4y at each stage.

Figure 3 contains plots of ep(a), equation (30), as functions of xg and yg, with zq held fixed at its true value, -2000.
N 2 .
o@=T % [uw-mwan],

o=l ue D,

(30)

The purpose of these plots is to show how ep(a), which is the function that must be minimized to maximize (19), nar-
rows in the vicinity of its minimum as the number of images used increases. Since the height of ep(a), i.e., the distance
between its minimum and maximum is an increasing function of the number of images used, we have only plotied the
functions in the vicinity of their minima. That is, the plots stop at a height of roughly 3000 units above the minima.
The functions shown are based on the use of 2, 6, and 10 images, respectively. It is seen that the functions narrow
appreciably in going from the use of two images to the use of 10 images. In Fig. 4, curves of ep(a) are again shown ,
but only two images are used in each case. However,, the angle between the pair of camera optical axes varies, with
angles of 1° 5° and 45° for the three plots shown. Notice how broad and flat the bottom of the curve associated with 1°
is, whereas the curve associated with 45° is much narrower, as expected. However, it is still not as narrow as the curve
in Fig. 3c where the angle between the optical axes of the first and tenth cameras is 40°. Hence, both the range of
angles spanned and the number of images used is important. The other observation of interest is that the functions in
Fig. 3 and those in Figs. 4a and 4b are smooth, whereas that in Fig. 4c is not. The multimodal benavior of Fig. 4c is
due to the high frequencies in the pattern on the sphere surface. The effect is moderated when the angle between the
optical axes of a pair of images ic small, and the effect is also suppressed by the averaging that takes place when many
more than two images are used.
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V lncremenm Stereo

A slightly different formulation is to write the joint hkehhood for the image differences I, -1,
L4 =Iy,e0eyIn=Ing. The jolnt likelihood can be written as

IT [27(20%) et exp{ La(Ua(11,8)) = Lzaey(u) }
[ ] 403“01 l[z 2 20~ ] ( 31)

,Hen. uza(u,8) in I34(uz.(u,a)) denotes the pomt in Dy lhat the point u in Dj,; maps to. The mean value functions
Hi(s.(u,a)) do not appear here since the expectauon of I(uza(u,8¢)) = I3p-i(u) for each u is 0. Also, the variance of this
difference for each u is 20%. Then ay,, is to be chosen to minimize

(Ne2y2 d, (N+2
~L @) = Zﬂ 21 In(4no?) + pN [lz.(Uz.(u.a)) - lz.-x(u)]z- (32)
n=i 2 Dl 4°1u| Dy

Again, it is computationally undesirable to store the N+2 images and also to process all of them simultaneously in order
to compute ay,;. Hence, as in Sec. IV.C,, we use an asymptotic approximation, Gawsnan in a, to represent (31) when
computing ayl,,.

Table 3 contains the estimates a based on a sequence of images mcludmg those in Fxg 2. Note that the angle
between the optical axes for the first and last camera posmons used for the images in Fig. 2 is 40°. The viewing angle
spanned by for the 18 camera posxuons used in computing Table 3 is 85°. Notice that even with using 18 nmages---9
pairs of differences-—the algorithm in Sec. 1V.C is considerably more accurate. The reasgn is that the algorithm minim-
izing (32) uses only the differences in pairs of images taken with camera optical axes th*are almost parallel. Hence, it
is small baseline stereo and suffers many of the disadvantages of the use of optical flow. If the images are noisy, the
relative accuracy of this algorithm would probably degrade considerably. It is interesting to note that the size of the
angle between the optical axes of the first and last images is not very important here. Rather, improved accuracy comes
from using many pairs of images in order to average out the effects of noisy perturbations.

On the other hand, small angle stereo permits computational advantages which we briefly touch upon. If the cam-
era does not move much in going from the (2n-1)th to the (2n)th position, uy,(u,a), where ueD,,.,, is close to u since
CRF(2n) is close to CRF(2n-1). Hence, we can use the Taylor series expansion:

dl; (u) Jdug,(u,
Loa(M2s(u8)) = Lpg(w) + [ nt H ) ] ab. 33)
'I’hus. . ’ e ’
Ay, duzy(u, ?
(aa(t200,8)) — ay (W) = {[lzn(“)-lzu-n(")] [ 2 :"H "’a‘: “’]Ab}, 34)

where Ab is an incremental vector specifying the incremental rotation and the incremental origin translation for CRF(2n)
in term of CRF(2n-1). The desisrability of the approximation is that in minimizing (32) with respect to a it is no longer
0120(V)

—

necessary to compute the u,(u,a) and then the arrays I, (v.a) and
av |v=uh(u,n)

ol,,(n
use the arrays I ;(u) and %l, ue Dy, y, directly. This makes for a considerable reduction in required computation.

duz,(u,2)
ab

for all ue D,,_;. Rather we can just

Furthermore, note that when computing the gradient of (34) with respect to a, only the term
and this function is very simple as seen in Eq. 6a.

The final remark of interest is that for the planar surface descnbed in the appendix, the use of Eqs. 6, 34, and A2
(from the appendix) in Eq. 32 permits a simple explicit solution for a1, the value of a that minimizes (32).

is a function of a,

VI Conclusion

In this paper, for the first time the joint likelihood of two or more images as a function of the a priori unknown 3-
D surface to be estimated is derived. This permits the full range of Bayesian analysis, estimation, and recognition tech-
niques to be applied to the 3-D surface inferencing problem. In particular, in this paper we develop a recursive
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sigorithm for the maximum flikelihood estimation of a parameterized surface based on a sequence of images taken,
perhaps, by a moving camera. This recursive estimator should be significantly more accurate than the use of the
extended Kalman filter, since the latter uses a linearization about the N* stage estimate o compute the N+1% stage esti-
mate whereas we use the complete information in the N+1* image.

APPENDIX: The Plane

We derive the expression for the vector 9z/da for a plane. Note that there are a number of different sets of param-
eters that can be used for representing a plane (or a cylinder, or a more general surface). We use the canonical parame-
terization in this section. We use the equation

0 =g(x.y,z) = Byx + Py + Bz - d , (A1)
subject to the constraint ‘ ,
0="f(xy2) =pt+p3 +pi-1 - (Al2)

Note, [d] is the distance from the plane to the origin in this representation. It is assumed that the plane is in general posi-
tion, because if, e.g., B3 = 0, then the plane normal is orthogonal to the first camera’s optical axis, and the plane surface

is not seen by the first camera since the camera then sees only the plane’s edge. Eq. (A})a) acam be used to solve for By
g/da

in terms of B; and P, Hence we can take a {0 be a’ = (B;,p2,d). Now % =) ooz Using (Ala), we get
By Wy By B Wl B
9By ofidBy 2B, By’ " o, APy, By’

98 98y _ zP_l_ Pux - Piz

B ER T R B

Hence, %5- =,

da |df, ap; By
% _,
| dd
Thus,
oz _ |Biz=PBsx Biz-PByy 1 )
aa’[ B B B (A2
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axN
# of image
Xy vy 70 R

mitial {11 60.0 6.0 -2120.0 125
2 16.9 9.7 20011 [

3 11.14 6.9 | -2002.3 123

4 T4 4.1 -2001.2 128

5 4.3 Q20§ 220008 (A

[ 3.1 201 20005 128

7 1.7 1.9 | -20000¢ | 128

N 1.8 1.8 | -2000.2 125

] -0.4 1.0 -2000.1 129
true a 0.0 0.0 1 -20000 128

Table 1

Figure 2
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ay
# of image
Xq Vg 74 R
initial a, 0.0 1 500 | -2080.0 | 128
2 11.0 G0 -1903.0 | 129!
3 27 | oL | -roo3s | 18]
1 06 | -1 | -200000 | 128
5 0.7 ST et o
B 0.8 8.3 0020 | s
7 1.1 REENERRE
N 0.6 L6 | -20005 1IN
) 1.0 1.5 b o001 |oess
true a 0.0 00 | -20000 IR
Table 2



(a) based on I}, Iz

~

(a) with 1° between optical axes

(b) bnsed on ll‘ lr_». e ey lo

Fig. 3

i

(b) with 5° between optical axes

Fig. 4
number of a
images used - T R
initial & 50.0 | 50,0 | -2030.0 123
2 26.8 | 20.3 | -2001.8 | 128
4 16.0 1 13.3 | -2001.1 123
6 10.1 | 10.4 | -2001.4 | 12%
8 8.6 88 | -2001.2 | 128
10 10.3 89 | -1999.0 | 128
12 5.3 4.9 | -2002.1 123
14 3.9 1.3 | -2000.4 | 128
18 5.9 | -1.4 { -2001.0 | 128
13 -0.8 b 22 1 -.2001.9 123
true a 0.0 0.0 | -2000.0 123
Table 3

N

(C) ba.wd on ll' 12. ey lm.

Etror function

{¢) with 13° between optical axes

Etror function based on two images
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